Autophagy attenuates endothelial-to-mesenchymal transition by promoting Snail degradation in human cardiac microvascular endothelial cells
نویسندگان
چکیده
Endothelial-to-mesenchymal transition (EndMT) mainly exists in cardiovascular development and disease progression, and is well known to contribute to cardiac fibrosis. Recent studies indicated that autophagy also participates in the regulation of cardiac fibrosis. However, the precise role of autophagy in cardiac fibrosis and the underlying molecular mechanism remain unclear. The present study aimed to explore the role of autophagy in EndMT, reveal the underlying molecular mechanism, and seek new therapy for cardiac fibrosis. In the present study, we found that EndMT and autophagy were induced simultaneously by hypoxia in human cardiac microvascular endothelial cells (HCMECs). Rapamycin, an autophagy enhancer, attenuated EndMT with promoting angiogenesis, while 3-methyladenine (3-MA) and chloroquine (CQ), agents that inhibit autophagy, accelerated the progression accompanied by the decrease in counts of tube formation under hypoxia conditions. Interestingly, intervening autophagy by rapamycin, 3-MA, or CQ did not affect hypoxia-induced autocrine TGFβ signaling, but changed the expression of Snail protein without alterations in the expression of Snail mRNA. Furthermore, the colocalization of LC3 and Snail indicated that autophagy might mediate Snail degradation under hypoxia conditions in HCMECs. Interaction of p62, the substrate of autophagy, with Snail by co-immunoprecipitation especially in hypoxia-incubated cells confirmed the hypothesis. In conclusion, autophagy serves as a cytoprotective mechanism against EndMT to promote angiogenesis by degrading Snail under hypoxia conditions, suggesting that autophagy targetted therapeutic strategies may be applicable for cardiac fibrosis by EndMT.
منابع مشابه
Wnt5a attenuates the pathogenic effects of the Wnt/β-catenin pathway in human retinal pigment epithelial cells via down-regulating β-catenin and Snail
Activation of the Wnt/β-catenin pathway plays a pathogenic role in age-related macular degeneration (AMD) and is thus a potential target for the development of therapeutics for this disease. Here, we demonstrated that Wnt5a antagonized β-catenin response transcription (CRT) induced with Wnt3a by promoting β-catenin phosphorylation at Ser33/Ser37/Thr41 and its subsequent degradation in human ret...
متن کاملSlug is a direct Notch target required for initiation of cardiac cushion cellularization
Snail family proteins are key regulators of epithelial-mesenchymal transition, but their role in endothelial-to-mesenchymal transition (EMT) is less well studied. We show that Slug, a Snail family member, is expressed by a subset of endothelial cells as well as mesenchymal cells of the atrioventricular canal and outflow tract during cardiac cushion morphogenesis. Slug deficiency results in impa...
متن کاملCapillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells
Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملEndothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis
Emerging evidence has suggested the critical role of endothelial to mesenchymal transition (EndMT) in fibrotic diseases. The present study was designed to examine whether EndMT is involved in arsenic trioxide (As2O3)-induced cardiac fibrosis and to explore the underlying mechanisms. Cardiac dysfunction was observed in rats after exposure to As2O3 for 15 days using echocardiography, and the depo...
متن کامل